
MESoR 038655 D.2.1

1

SIXTH FRAMEWORK PROGRAMME

MESOR

Management and Exploitation of Solar
Resource

D.2.1 – “Web Service Tutorial”

Project/Contract no.: 038655

Date of preparation of the document: July 15, 2008

Version Date Changes made by Sent to
1.0 08/12/2008 First Official Version ARMINES MESoR Members

1.1 14/01/2009 Version 1.1 ARMINES MESoR Members

 2

Table of Contents

1 Introduction ... 3

1.1 Foreword..3

1.2 Web Service Strategy ...3

2 Requirements .. 6

2.1 Operating System ..6

2.2 Application Server Jboss ..6

2.3 Java JDK (Java Development Kit) ..6

2.4 Eclipse IDE (Integrated Development Environment) ...7

3 Component installation ... 7

3.1 Install Jboss ...7

3.2 Unzip the JDK’s..7

3.3 Gunzip and Untar Eclipse ...7

3.4 Get plugins for Eclipse ...7

3.5 Configure Eclipse ... 10

4 Web Service Creation Process .. 13

4.1 Create WSDL file ... 13

4.2 Create Java Classes from the WSDL file .. 25

4.3 Run Eclipse to create the code of the Web Service ... 26

4.4 Edit the web.xml file and create the war file .. 31

4.5 Deploy the web service on Jboss ... 33

4.6 Use Eclipse to test (consume) the Web Service .. 38

4.7 Web Service exploitation strategy ... 43

 3

1 Introduction

1.1 Foreword

This tutorial intends to help the partners of the MESoR project to build, set-up, and
deploy Web Service providing therefore a standard mean to access their inner resources.
Resource denotes any data, data set, relational database, application… that a provider
may wish to offer to the community.

In the framework of the MESoR project we have already selected standard components
(platform, programming language, protocols…) for supporting web services development
and thus, this tutorial does not claims to be exhaustive regarding all possible means to
build Web Services. The justification of the choice of those components has already been
given during the project and approved by the MESoR consortium. In addition, several of
them have been selected for the realisation of two of the three portals built by the GEOSS
Architecture and Data Committee. All the components used in MESoR are based on
Open-Source software and respect as much as possible international existing standards.

1.2 Web Service Strategy

Before beginning to develop your Web Service, you must select the resource(s) that you
want to provide to the community. The figure below explains where the different
components of a Web Service “ecosystem” stand. The three red boxes represent from
right to left:

1. the data or resource that you own and want to share,

2. the Web Service components that your are going to build in this tutorial (box
#4),

The Client that will exploit your Web Service. This client will be built by ARMINES based

upon your Web Service description.

 4

Figure 1 Description of the various components of the MESoR information system and Web

Services

In a distributed approach, Web Services can be set-up in different manners. For

example, you might want to both develop the Web Service and operate the needed

platform (application server) that ensures the visibility and persistence of the service.

Conversely, you might only wish to build the Web Service component, but do not want

to operate the application server. Whatever your choice you must ensure that the

resource is accessible for the given case. For example, if the resource is not allowed to

be accessed remotely through the network by a Web Service, you will have to build

and operate this Web Service at your own premise. If the resource can be remotely

accessed, you have both choices:

1. build, deploy and persistently operate your Web Service at your own
premise,

2. build deploy and test your Web service and then send the Web Service
archive to ARMINES which will deploy and host it on its own platform at
www.webservice-energy.org.

The matrix below summarizes the various approaches that are offered in the framework
of MESoR.

 Type of access to
the resource

Build and test
Web Services

Deploy and persistently
operate Web Service

Case #1 Local only At your premise At your premise

Case #2 Possibly remote At your premise At your premise

Case #3 Possibly remote At your premise At webservice-energy.org

Table 2

 5

Let give examples to illustrate these cases. Assume you own a database that you want

to share. The format of your database and the software used for the management have

no importance at all. In order to exploit the database, you certainly have an application

that extracts data. What is denoted by resource is this application. This application can

be natively a Web service; otherwise, a Web service is developed to encapsulate this

application. When invoked, a Web service must exchange messages in certain formats

with the Web, e.g. SOAP and HTTP formats (Fig. 1). The application server (remote

Web server in Fig. 1) is in charge of these processes of encoding/decoding/exchanging

messages. In Case #1, the Web service can only be invoked by your application server.

In Case #2, it can be invoked remotely and also by your application server(. In Case #3,

you do not operate an application server; the Web service archive is stored in a

warehouse (e.g., webservice-energy.org) from which it can be invoked. Note that in

each case, your computer is requested to perform the access to your database.

 6

2 Requirements

In order to be able to install the needed components for this tutorial you must have a
basic understanding of Unix/Linux.

Windows Operating Systems (OS) are also candidates though we have not tested it.

All the command lines written down in this tutorial refer to a Linux OS.

2.1 Operating System

The selected Operating System (OS) for this tutorial is Ubuntu a Linux based operating
system. You can download this OS at: http://www.ubuntu.com/

Most of the Unix/Linux OS are compatible. The choice is up to you.

2.2 Application Server Jboss

The Application Server for testing and deploying your Web Service is Jboss. For this
tutorial, we have used the version Jboss Application server 4.2.2.

Go to http://www.jboss.org/ and under the “Download” section select the “Jboss
Application Server” link.

Select the latest stable version 4.2.2.GA with which I wrote this tutorial.

2.3 Java JDK (Java Development Kit)

We currently need one version of Java (JDK 6) for operating Eclipse and one version of
Java (JDK 5) for operating Jboss. As stated on the Jboss web site JDK 5 is required to
run Jboss AS 4.2 and therefore we recommend to use JDK 5.

Note: If you plan to let ARMINES hosts your Web Service you must follow the two Java
JDK approach.

For the JDK 6:

On the Sun java web site http://java.sun.com download Java JDK1.6 or JDK 6.0 (same
version different name).

To do so select Java SE (Standard Edition).

Select JDK 6 Update 6 (at the time of writing this tutorial) or a higher version.

Select “Linux” as Platform and let” Multi-language” as default language.

Finally select “Linux self-extracting file” “jdk-6u6-linux-i586.bin”.

For the JDK 5:

Select the “Previous Releases” tab link under the Java SE page.

 7

Select “J2SE 5.0 Downloads” link.

Select JDK 5.0 Update 15 (at the time I’m writing this tutorial) or a higher version.

Select “Linux” as Platform and let” Multi-language” as default language.

Finally select “Linux self-extracting file” “jdk-1_5_0_15-linux-i586.bin”.

2.4 Eclipse IDE (Integrated Development Environment)

Go to the Eclipse Web site http://www.eclipse.org

Follow the “Download Eclipse” link and select “Eclipse Classic 3.4 (151 MB)” link.

3 Component installation

3.1 Install Jboss

Open a terminal window, go to your home directory and create a new folder eg. “www” .

Go in your home directory:

mesor:~$ cd

Unzip the Jboss archive in this folder. “Desktop” is the place where the archive has been
stored after download. This may vary according to your browser’s download preferences.

mesor:~$ unzip /Desktop/jboss-4.2.2.GA.zip

You must have now a folder called ”jboss-4.2.2.GA” .

3.2 Unzip the JDK’s

In order to unzip the JDK’s (5 and 6) that come as bash script file (.bin extension), you
must run the shell interpreter “bash” command.

mesor:~$ bash Desktop/jdk-6u6-linux-i586.bin

Do the same for the JDK 5.

3.3 Gunzip and Untar Eclipse

mesor:~$ tar –xzf Desktop/eclipse-SDK-3.4-linux-gtk .tar.gz

3.4 Get plugins for Eclipse

Go to the eclipse folder that has been created. In the command line window run eclipse
with the following options.

mesor:~/eclipse$./eclipse –vm ~/jdk1.6.0_07/bin/ja va

where “–vm” is the Virtual Machine option that indicate witch java version to use.

 8

At the Eclipse prompt for the workspace, leave it as default.

You should now get the Eclipse window like this one:

Figure 3

Select the “Workbench” icon and you get the following Eclipse window:

 9

Figure 4

Before you start using Eclipse you need to download extra plugins needed for writing
Web Services.

Select the “Help/Software Update…” menu.

Select the “Available Software” tabs at the top of the window.

Click on the “Ganymede Update Site” arrow. If this name does not exist, you can add it
with the button “Add Site” under the location

“http://download.eclipse.org/releases/ganymede”.

Wait until modules are displayed.

Then tick on the “SOA Development” and the “Web and Java EE Development” boxes.

Finally click on the “Install” button.

 10

Figure 5

Then Eclipse display the list of the package that will be installed.

Finally accept the licence and click on the “Finish” button.

The installation of the package will start. This may take few minutes.

You might be asked to restart the system.

3.5 Configure Eclipse

First run Eclipse

mesor:~/eclipse$./eclipse –vm ~/jdk1.6.0_07/bin/ja va

Click on the “Workbench” icon.

The default view is “Java” (button on the top right) and we are going to set some
preferences.

Select “Windows/Preferences” menu.

In the list on the left select “java/installed JREs” and tick the “jdk1.5.0_15” item.

Eclipse already has the JRE 6 as default and we need to add the JRE 5 to the list in order
to be able to write our Jboss compliant web service.

Click the “Add” button.

Select the “Standard VM” JRE Type.

 11

Figure 6

Click “Next”.

Click on “Directory” and select the home directory of the JDK 5.

Figure 7

 12

Once the JRE system libraries have been loaded, click the “Finish” button.

Now you must have two JRE in the list of installed JRE’s.

Select the JRE5 as default as we are going to develop Web Services.

Now under the “Java” arrow menu on the left, select “Compiler” sub-menu.

Set the “Compiler compliance level” to “1.5” in the top right option box.

Click the “Apply” button and validate with “yes” at the windows pop-up.

Under the “Server” arrow menu on the left select “Runtime Environment” sub-menu.

Click the “Add button”.

In the list of “Server/Euntime Environment”, locate the “Jboss” folder and select “Jboss
V4.2”.

Click the “Next” button.

Let the JRE as “Default JRE”.

Click on the “Browse” button to select the “Application Server Directory” .

Locate and select the “jboss-4.2.2.GA” folder.

Figure 8

Click on the “Finish” and then on the “Ok” button.

Congratulations, your Eclipse environment is set-up.

 13

Close eclipse to make sure all your configuration options will be saved.

4 Web Service Creation Process

It is important to recall that at that stage of the tutorial you should already have identified
the resource that you want to provide by the mean of Web Services approach. In this
tutorial we have selected a resource that copes with the case #3 of the Table 1 as an
example.

This resource is accessible through a request to a web server:

http://www.helioclim.net/com/ncep_climate.php

4.1 Create WSDL file

We are going now to create the structure of the WSDL file by using Eclipse.

Run eclipse as usual:

mesor:~/eclipse$./eclipse –vm ~/jdk1.6.0_07/bin/ja va

Once you have the Eclipse default windows, select a new “Perspective”.

Click on the “Perspective” icon on the top right of the window.

Select “Other/Java EE”.

Now create a new project:

Select the top menu “File/New/Dynamic Web Project”.

Make sure that the configuration “Custom” is set on Java 5.

To do so click on the “Modify” button and set the “Java” Project Facets” to 5.0.

 14

Figure 9

Click “OK”.

Enter the name of your project (“EMPClimate” in our case).

Click “Finish”. You should end-up with a screen like this:

Figure 10

 15

Now let’s create the WSDL file of the Service.

Right click in the “WebContent/WEB-INF” arrow folder on the left side of the window.

Select “New/Folder” and name it “wsdl”.

Once the “wsdl” folder is in the Project Explorer left window, right click and select:

“New/Other” .

In the list of the “Select a Wizard” window select “Web Services” folder and “WSDL” item.

Figure 11

Click “Next” and enter a name for the WSDL file. In our case “EMPClimate.wsdl”.

Click “Next” and change the “target namespace field” to a name that recalls the resource
that you are going to provide. Any name is possible it is just easier for everyone if you do
so. In our case http://www.soda-is.com/EMPClimate/.

Check the “rpc literal” option in the “SOAP Binding Options” radio button list. This is the
only encoding message currently supported by Jboss.

Click the “Finish” button.

You should end-up with a screen like this displaying the your newly created WSDL file.

 16

Figure 12

If we take a closer look at the graphical representation of the components of this WSDL
file, we have:

• on the left, the service and port definition,

• on the right, the interface including the inputs outputs definition and the
operations,

• in the middle, the binding between the service and the interface.

As both components have by default the same name eg. “EMPClimate” we are going to
rename them:

The service (left box) became “EMPClimateService”.

The interface became “EMPClimatePortType”.

You should end up with a screen like this:

 17

Figure 13

On the “EMPClimatePortType” box, operations are defined by default. We are going to
change those operations to match the ones that come out from our resource.

To do so in our example (not mandatory) we will use a standard approach by using a
XSD (XML Schema Definition) schema that provides prescriptions on types for Web
Service definition. This schema has been provided to you with this tutorial. It can also be
downloaded at: http://www.soda-is.com/schemas/ where you have to select the
corresponding XSD schema.

This schema is already defined and we are going to import it in our project.

Select the “wsdl” folder.

Click on the top menu “File/Import”.

Select the “General/File System” folder.

Click the “Next” button.

Then locate where is your XSD Schema with the top “Browse” button.

Leave options as is.

 18

Figure 14

Then click on the “Finish” button to load the file in your project.

You should see now the XSD Schema file in the “wsdl” folder of your “Project Explorer” .

Figure 15

 19

We will now use this Schema for defining the various type of our Web Service ensuring
therefore a standard approach of type definition.

Lets go back to the “EMPClimatePortType” box.

We are going to tie the XSD Schema to the type definition of our Web Service.

Lets start by changing the name of the operation on the “EMPClimatePortType” box.

Change “NewOperation” with “GetAllValues”.

Note that the “input” and “output” parameters names are changed on the fly according to
the new operation name.

Now we are going to change the type of the input and use the XSD Schema.

Select the “string” value in the “EMPClimatePortType” box.

Click on the “Properties” tab in the bottom tabs list.

In the “Type” menu of the “Properties” tab instead of the default value “string” select
“New”.

Enter the new type value name. In our case “GetAllValuesRequestType”.

Figure 16

Tick the “Complex Type” option if not already set and click the “OK” button.

You should now be able to view the detail of the Service by clicking on the blue arrow on
the right of the “EMPClimatePortType” box.

 20

Figure 17

This will open a new tabs call “Inline Schema of EMPClimate.wsdl”.

Now we are going to change the default type by an existing one that comes from the XSD
Schema.

Select the “Inline Schema of EMPClimate.wsdl” tab.

Right click on the “GetAllValuesRequestType” box and select “Add Element”.

Select the “NewElement string” line of the object and change the type of this element by
clicking in the bottom “Type” menu and by selecting the “Browse” option instead of the
default “xsd:string” option.

 21

Figure 18

Now select the “Enclosing Project” radio button at the bottom of the pop-up window.

In the upper “Name” form start typing “geo…” and the auto completion will provide you
with the full name that are available in the XSD Schema that match your name (ie.
geopointType).

Click the “Ok” button to add the “geopointType” type to the selected object. You can see
that the values “latitude”, “longitude”, “elevation” defined as “floats” are correctly bind to
the “geopointType” element.

Rename the “NewElement” parameter name of the “GetAllValuesRequestType” box into
“geopoint”.

 22

Figure 19

Save your works by clicking on the “Save” (or Ctrl + S) icon in the top menu.

Now you have to do the same for the “output” values of the “EMPClimatePortType” in
your “EMPClimate.wsdl” file.

Change the current type “string” by a “New” (Complex Type) one called
“GetAllValuesResponseType”.

Click on the blue arrow to open the “Inline Schema of EMPClimate.wsdl” tab.

Then right click on the new type and select “AddElement”.

Change the element name from “NewElement to “ghi”. In our example this new type will
handle the Global Horizontal Irradiance values coming out from the resource.

In the bottom “Properties” tab, change the “Type” from “xsd:string” to
“sequenceOfObservationType” coming from the XSD Schema. To do so, click on the
“Type” bottom menu, select “Browse…” and try the completion of the “Name” with “seq”.
Select the item “sequenceOfObservationType” in the rolling list.

Note that this time you do not have to click the “Enclosing Project” toggle button to find
the type by completion. This is because the XSD Schema has already been loaded once
when we selected the type for the input value.

 23

Figure 20

You should end-up with a screen like this, showing the first two outputs objects and type
of your Web Service.

Figure 21

 24

We know that our resource is accessible on-line (case #3):

http://www.helioclim.net/com/ncep_climate.php?latlon=10,40

The output of the resource gives the following data flow for latitude 10° and longitude 40°:

 Lat. Long. Alt. Jan. Feb. Mar. Oct. Nov. Dec. Yearly Mean

GHI 10.00 40.00 1425 232 256 256 … 256 252 242 250

TempMin 10.00 40.00 1425 10.0 11.5 12.5 … 12.0 11.5 10.0 12.0

TempMax 10.00 40.00 1425 17.0 18.0 18.5 … 18.0 17.5 16.5 18.5

TempMean 10.00 40.00 1425 13.0 15.0 15.5 … 15.0 14.5 13.5 15.5

HumMin 10.00 40.00 1425 43.5 41.5 40.5 … 43.0 43.5 44.0 41.5

HumMax 10.00 40.00 1425 55.5 53.0 52.5 … 54.5 55.0 56.0 53.0

HumMean 10.00 40.00 1425 49.5 47.5 47.0 … 49.0 49.5 50.0 47.5

Table 2

We could create as many new elements or “Operations” in our EMPClimate wsdl file as
we wish our web Service to deliver. In this tutorial we’ve chosen to provide only one
operation that delivers all the seven values (temp_min, temp_max, temp_mean,
hum_min, hum_max, hum_mean).

We have generated the corresponding WSDL file that contains all the needed parameters
to build your Web Service.

First, close the eclipse application

Then, replace your existing WSDL file (EMPClimate.wsdl) by the one provided within this
tutorial archive file named (EMPClimate_tutorial_v1.1.wsdl). Keep the original name
(EMPClimate.wsdl). In the following prompt command, we assume that you have
unzipped the archive in your home directory. If this is not the case just copy and rename
accordingly.

mesor:~$cp ~/EMPClimate_tutorial_v1.1.wsdl

~/workspace/EMPClimate/WebContent/WEB-INF/wsdl/EMPC limate.wsdl

Restart Eclipse.

In the “Project Explorer” tab, double click on the “EMPClimate” project.

Select “WebContent/WEB-INF/wsdl” folder and open “EMPClimate.wsdl” file.

Click on the arrow of the “GetAllValuesResponseType” box to display the “Inline Schema
of EMPClimate.wsdl” tab.

You should now be able to view all the elements of the ”GetAllValuesResponseType”. like
the following figure.

 25

Figure 22

In this list, all of the types that have been bind to the inputs and outputs come from the
XSD Schema. If you need extra elements that are not contained in the XSD Schema you
can add one. There is no difficulty to mix elements descriptions that are supported or not
by such a Schema.

Don’t forget to re-generate the binding content when you modify or reload the WSDL file.

To do so, click on the little square box between the “EMPClimateService” box and the
“EMPClimatePortType” box.

Select the “Properties” tab in the bottom window and click on the “Generate Binding
Content…” button.

Tick the “Overwrite existing binding information” option.

Leave “rpc literal” option and click on the “Finish” button.

You can save your work and quit Eclipse.

4.2 Create Java Classes from the WSDL file

Now we are going to use some Jboss tools to create the Java Classes of our Web
Service.

Let go back to the Xterm.

Set the following variables to your environment:

Set the JAVA_HOME environment variable to the JDK 5

mesor:~$ export JAVA_HOME= ~/jdk1.5.0_16

 26

Set the JBOSS_HOME environment variable to jboss-4.2.2.GA

mesor:~$ export JBOSS_HOME=~/jboss-4.2.2.GA

Go the directory where your WSDL file is. It should be in the” …WEB-INF/wsdl” directory
of your installation.

mesor:~$ cd ~/workspace/EMPClimate/WebContent/WEB-I NF/wsdl/

Run the “wsconsume.sh” script with the following option to generate the Java Classes of
your WSDL file.

mesor:~/[..]/wsdl$ bash $JBOSS_HOME/bin/wsconsume.s h –k

EMPClimate.wsdl

Figure 23

All the files that have been generated by the “wsconsume.sh” script are located in two
directories (“empclimate” and “solarresourceknowledge”) at:

~/workspace/EMPClimate/WebContent/WEB-INF/wsdl/output/com/soda_is

Those names are inherited from namespace values of the wsdl and the Schema files.

4.3 Run Eclipse to create the code of the Web Service

Now that all the classes of the skeleton of our Web Service have been created we need
to run Eclipse to start programming our application based on those already existing
classes.

 27

Start a new Xterm.

Go to the Eclipse directory an run:

mesor:~/eclipse$./eclipse –vm ~/jdk1.6.0_07/bin/ja va

When your Project has been loaded in the Project Explorer window, right click on the
project name (in our example “EMPClimate”) and select “Refresh” or “F5 key ” to make
visible all the newly created Java Classes of the “output” directory.

In the “Project Explorer” menu, click on the following arrow folders to view the Java
Classes:

EMPClimate/WebContent/WEB-INF/wsdl/output/com/soda-is/empclimate

or

EMPClimate/WebContent/WEB-INF/wsdl/output/com/soda-is/solarresourceknowledge

You need now to move the “com” folder under the “output” folder in the “src”.

To do so, right click on the “com” folder.

Select the “Move…” option.

Select the “src” folder.

Click the “OK” button.

After the move is completed, delete the empty “output” folder.

Now you can view the Java Classes that are available in the “Project Explorer” as a menu
called: “java Resources:src”

You have two packages called:

“com.soda_is.empclimate”

and

“com.soda_is. solarresourceknowledge”

In the “com.soda_is.empclimate” package double-click on “EMPClimatePortType.java” .

This file is the interface of the Web Service and contains the Java code that comes from
the WSDL file. It’s in this file that you will add your own Java code for doing your own
calculation on the various elements that are available.

Take a look at the following screen (PS: this is the “Maximise” display available by
clicking the icon on the top right of the window). You should get something similar.

 28

Figure 24

To start modifying the interface file (EMPClimatePortType.java), you should change the
“public interface” directive to “public class”.

Save the file.

Now you need to implement the operation (getAllValues) of this newly created class.

As a starter just make this Method return a “null” value. This will avoid Eclipse to
complain. Save your work.

See the following figure with the highlighted modifications:

 29

Figure 25

We have appended to this tutorial the modified “EMPClimatePortType.java “ file in order
to show the code that we have added to the operation binded with the “EMPClimate.wsdl”
file that we have provided.

You should load this file in place of the current “EMPClimatePortType.java”.

To do so, close Eclipse.

Replace the file “EMPClimatePortType.java” that is in your project by the one
(EMPClimatePortType_tutorial_v1.1.java) provided with this tutorial. Keep the
“EMPClimatePortType.java” name.

mesor:~$cp ~/EMPClimatePortType_tutorial_v1.1.java

~/workspace/EMPClimate/src/com/soda_is/empclimate/E MPClimatePor

tType.java

Restart Eclipse.

When the project is loaded, Eclipse ask for a “Refresh”.

Press “F5” key of go to “File > Refresh”.

 30

Figure 26

The new “EMPClimatePortType.java” file is loaded and contains the code for accessing
the remote resource.

You can browse this code to get a flavour of Java code for Web Services.

Figure 27

 31

4.4 Edit the web.xml file and create the war file

Now that the code is written, we are going to create the Web archive (war) file to be
deployed on the Jboss Application Server.

Go in Eclipse and in the “Project Explorer” window right click on:

“JavaResources:src/EMPClimatePortType.java/EMPClimatePortType” (Class symbol)

Select “Copy Qualified Name” option.

Open the file “web.xml” under the folder:

“WebContent/WEB-INF”

In the main window, right click on the “web-app” item and select:

“Add Child/message-destination – welcome-file-list/servlet”

Figure 28

Click the “servlet” item in the bottom of the list and change the following fields:

for “servlet-name” enter “EMPClimate”,

for “servlet-class” right click in the field and past the “Qualified Name” that we copied
previously (com.soda_is.empclimate.EMPClimatePortType).

You should have something similar to the following screen.

 32

Figure 29

Similarly to adding a “servlet”, you must add a “servlet mapping” to the web.xml file. This
will give a URL to our service.

In the main window, right click on the “web-app” item and select:

“Add Child/message-destination – welcome-file-list/servlet-mapping”

Click the “servlet-mapping” item in the bottom of the list and change the following fields:

for “servlet-name” enter “EMPClimate”,

for “url-pattern” enter “/service”.

Save your work (Ctrl S).

You should have something similar to the following screen.

 33

Figure 30

We have finished to set-up the Web Service and we need now to export it as a Web
archive or WAR file.

In the “Project Explorer”, right click on “EMPClimate” project and select:

“Export/WAR file”.

Keep the default name eg. “EMPClimate” and select a destination folder of your choice.
In our case the home directory of the user.

Un-tick the option “Optimize for a specific server runtime”.

Tick the option “Overwrite existing file”.

Click the “Finish” button.

Close eclipse.

4.5 Deploy the web service on Jboss

We are testing the deployment of our Web Service on the Jboss Application server.

Open a Xterm.

Define the correct JBOSS_HOME environment:

mesor:~$ export JBOSS_HOME=~/jboss-4.2.2.GA

Define the correct JAVA_HOME variable:

mesor:~$ export JAVA_HOME=~/jdk1.5.0.16

 34

Go the Jboss directory

mesor:~$ cd $JBOSS_HOME

Start Jboss:

mesor:~/jboss-4.2.2.GA$./bin/run.sh

Figure 31

It may take few second while Jboss filled the Xterm with logs.

You must end-up with a line similar to this:

“…Started in 25s:117ms”

 35

Figure 32

Now that Jboss is started, we are going to deploy our “EMPClimate.war” file in the
“deploy” section of the Jboss server.

Open a new Xterm and do the following:

Define the correct $JBOSS_HOME environment:

mesor:~$ export JBOSS_HOME=~/jboss-4.2.2.GA

and copy the war-file “EMPClimate.war” in the deploy directory of Jboss

mesor:~$ cp EMPClimate.war $JBOSS_HOME/server/defau lt/deploy/

If you look at the Jboss logs in the first Xterm where Jboss has been started, after the
“…Started in 25s:117ms” line you can see that our WAR file has been deployed and that
the WSDL file has been published.

 36

Figure 33

To check if Jboss is correctly launched and has correctly deployed your Web Service,
open your favorite browser and enter the following URL:

http://localhost:8080/jbossws

This is sub-menu “Jboss Web Service” of the Jboss Application Server.

Figure 34

 37

If you click on the link: “View a list of deployed service” you will be led to:
http://localhost:8080/jbossws/services witch show you the list of deployed Web Services.

You should have something similar to the following screen.

Figure 35

Note on the “Endpoint Address” URL the “/service” that we have previously entered in
Eclipse as “service-mapping/url-pattern” value of the file ”web.xml”.

Click on the link to see the WSDL display as a XML grammar in your browser.

 38

Figure 36

Congratulations your Web Service is correctly deployed on Jboss.

This WSDL could be used latter on to build the skeleton of a client.

4.6 Use Eclipse to test (consume) the Web Service

To make sure your Web Service will correctly answer to the request and provide the
correct result, we are going to test it in Eclipse.

First in the browser copy the URL of the WSDL file:

“http://127.0.0.1:8080/EMPClimate/service?wsdl”

Start Eclipse, if it was not already running.

Start the “Web Service Explorer” by clicking on the icon “Launch the Web Services
Explorer” of the top icon menu.

 39

Figure 37

Note that the “Web Services Explorer” window could appear directly in the eclipse IDE or
in your favourite browser. There is some advantages (eg. history of entered values) to
tests the service in a browser. To latter do so, copy the URL that is in the top bar of the
Eclipse application. In our example (see Figure 38):

“http://127.0.0.1:37469/wse/wsexplorer/wsexplorer.jsp?org.ecplise.wst.ws.explorer=0”

 40

Figure 38

First click on the “WSDL Page” icon located in the top right menu bar of the “Web
Services Explorer” window. (See tool tip in the Figure 38)

Then click on the link “WSDL Main” on the left part of the “Web Service Explorer” window.

In the form on the main window enter the URL of the WSDL file:

http://127.0.0.1:8080/EMPClimate/service?wsdl

 41

Figure 39

Press the “Go” button

You should see the “WSDL binding details” of the Web Service. This is the operation
(GetAllValues) that we have implemented in our Web Service.

Figure 40

 42

You can now test the operation. Click on the link “GetAllValues”.

Click on the “Add” link for the elements “latitude” and “longitude” and enter your desired
values. The element “elevation” is not relevant for this service.

Figure 41

Click the “Go button.

Resize the “Status” window below and verify the response provided by your Web Service.

If you get something similar to following window you have successfully test your Web
Service.

 43

Figure 42

4.7 Web Service exploitation strategy

If you plan to operate your Web Service at your premise, you must make sure that the
endpoint (http://127.0.0.1:8080/EMPClimate/service?wsdl) is accessible from the outside
of your domain. The address of the web site must be public as opposed to the URL
above. This is necessary to allow partners to access and possibly build a client onto your
Web Service.

If you plan not to operate your Web Service by your own, ARMINES, in the framework of
the MESoR project proposes you to host your Web Service in its platform named
www.webservice-energy.org. The service that you want to provide must be remotely
accessible (remember the different possible cases). ARMINES can deal with any
restriction you might want to apply on the use of your Web Service.

To provide this Web Service to ARMINES, you must send the WAR file
(“EMPClimate.war“ in our case) by email if not too big or by any other appropriate mean.

The archive does not need to include the Java source. Only Java Classes and the
“web.xml” file are mandatory.

